Class I, Division 2, Groups B, C, D Class II, Division 2, Groups F, G Class III, Division 2 ## **Application** - Nelson Type NC constant wattage heater cable is ideal for use in maintaining fluid flow under low ambient conditions. - Freeze protection and process temperature maintenance systems such as product pipelines, process water, dust suppression systems, lube oil and condensate return are typical applications for this product. - The base product is supplied with a tinned copper metal braid that may be used in both general applications and in dry, non-corrosive hazardous (classified) areas. - It is also used to provide a conductive ground path when cable is installed on nonconductive surfaces, such as plastic or painted pipe. #### **Features** - Nelson Type NC constant wattage heater cable is a parallel resistance electric heater strip. - A fluoropolymer sheath material is extruded over the two multistranded, nickel-plated, 12-gauge copper bus wires. - The nichrome heating element is spirally applied around parallel construction and in contact with the bus wires at specific intervals known as zones. - A fluoropolymer over jacket is then extruded over the construction to provide dielectric strength, moisture resistance, and for protection from impact and abrasion damage. - A stranded tinned copper metal braid is supplied on all heaters - An optional stainless steel braid is available for mechanical abuse situations. - An optional fluoropolymer over jacket can be specified when the heater cable is to be installed in wet or corrosive environments. - Nelson Heat Tracing Systems products are supplied with a limited warranty. ## **Operating Principle** - The parallel bus wires supply voltage along the entire length of the heater cable. - A resistance wire heating element is spirally wrapped around bus wires contacting alternate bus wires at specific intervals forming heating zones. - · This series of parallel heating zones provides a constant power output for each zone, irrespective of where the cable is cut along the length of the bus wires. - Each cable construction has the heating zone resistance sized to provide multiple power ratings when used on different - This variation is accomplished using different spiral wrap spacing and heater zone lengths. - There is no change of power output as the temperature changes, giving a steady power output anywhere in its recommended operating range. #### **Options** - Connection Kits for Power Connection, Tee Splice, Splices and End Seals (Nelson PLT Series) - Thermostatic Controls (Nelson TA, TH, TE and HC Series) - Junction Boxes, Tapes and Warning Signs - Custom Control, Monitoring and Power Panels #### **Certifications and Compliances** - FM Approved: JI 1N0A8.AF - Other Standards: IEEE 515-2004, IEEE 515.1-2005 FM: Class I, Division 2, Groups B, C, D Class II, Division 2, Groups F, G Class III, Division 2 ## **Selection Table** | Service
Voltage | Watts/m
(Watts/ft) | Maximum
Segment
Length
m (ft) | Maximum
Maintenance
Temperature
°C (°F) | Maximum
Intermittent
Exposure
°C (°F) | T–Rating | Catalog
Number | |--------------------|-----------------------|--|--|--|----------|-------------------| | 120 | 13.1 (4.0) | 123 (405) | 572 (300) | 752 (400) | Т3 | | | 208 | 39.4 (12.0) | 123 (405) | 302 (150) | 752 (400) | ТЗ | NC4 | | 120 | 26.2 (8.0) | 87 (285) | 410 (210) | 752 (400) | Т3 | NC8 | | 120 | 4.9 (1.5) | 203 (665) | 572 (300) | 752 (400) | ТЗ | | | 208 | 14.8 (4.5) | 203 (665) | 545 (285) | 752 (400) | Т3 | | | 220 | 16.4 (5.0) | 203 (665) | 518 (270) | 752 (400) | Т3 | NC26 | | 240 | 19.7 (6.0) | 203 (665) | 473 (245) | 752 (400) | Т3 | | | 277 | 26.2 (8.0) | 203 (665) | 410 (210) | 752 (400) | Т3 | | | 120 | 8.2 (2.5) | 157 (515) | 572 (300) | 752 (400) | Т3 | | | 208 | 24.6 (7.5) | 157 (515) | 419 (215) | 752 (400) | Т3 | NC210 | | 220 | 27.9 (8.5) | 157 (515) | 392 (200) | 752 (400) | Т3 | NG210 | | 240 | 32.8 (10.0) | 157 (515) | 347 (175) | 752 (400) | Т3 | | | 120 | 9.8 (3.0) | 143 (470) | 572 (300) | 752 (400) | Т3 | | | 208 | 29.5 (9.0) | 143 (470) | 374 (190) | 752 (400) | Т3 | NC212 | | 220 | 32.8 (10.0) | 143 (470) | 347 (175) | 752 (400) | Т3 | NG212 | | 240 | 39.4 (12.0) | 143 (470) | 302 (150) | 752 (400) | Т3 | | Class I, Division 2, Groups B, C, D Class II, Division 2, Groups F, G Class III, Division 2 #### **Circuit Breaker Selection** | | | | | Maximun | /s. Circuit Br | eaker Size | | | | | | |---------|----------------|--------------|--------------|---------------|----------------|--------------|--------------|--------------|--------------|--------------|-------------------| | | Watts/m | | 115/120 Vac | | | 208/220 Vac | | | 240/277 Vac | | | | Voltage | (Watts/ft) | 15A | 20A | 30A | 15A | 20A | 30A | 15A | 20A | 30A | Catalog
Number | | 120 | 13.1
(4.0) | 117
(385) | 123
(405) | _ | _ | _ | _ | _ | _ | _ | NC4 | | 208 | 39.4
(12.0) | _ | _ | _ | 64
(210) | 87
(285) | 123
(405) | _ | _ | _ | | | 120 | 26.2
(8.0) | 56
(185) | 78
(255) | 86.9
(285) | _ | _ | _ | _ | _ | _ | NC8 | | 120 | 4.92
(1.5) | 203
(665) | _ | _ | _ | _ | _ | _ | _ | _ | NC26 | | 208 | 14.8
(4.5) | _ | | _ | 180
(590) | 87
(285) | | | | | | | 220 | 16.4
(5.0) | _ | _ | _ | 52
(555) | 81
(265) | _ | _ | _ | _ | | | 240 | 19.7
(6.0) | _ | _ | _ | _ | _ | _ | 152
(500) | 203
(665) | _ | | | 277 | 26.2
(8.0) | _ | _ | _ | _ | _ | _ | 131
(430) | 180
(590) | 203
(665) | | | 120 | 8.2
(2.5) | 157
(515) | _ | _ | _ | _ | _ | _ | _ | _ | - NC210 | | 208 | 24.6
(7.5) | _ | _ | _ | 104
(340) | 143
(470) | 157
(515) | _ | _ | _ | | | 220 | 27.9
(8.5) | _ | _ | - | 98
(320) | 136
(445) | 157
(515) | _ | _ | _ | | | 240 | 32.8
(10.0) | _ | _ | _ | _ | _ | _ | 90
(295) | 122
(400) | 157
(515) | | | 120 | 9.8
(3.0) | 143
(470) | _ | | _ | _ | _ | _ | _ | _ | NG212 | | 208 | 29.5
(9.0) | _ | _ | - | 87
(285) | 119
(390) | 143
(470) | _ | _ | _ | | | 220 | 32.8
(10.0) | _ | _ | _ | 81
(265) | 111
(365) | 143
(470) | _ | _ | _ | | | 240 | 39.4
(12.0) | _ | _ | _ | _ | _ | _ | 75
(245) | 101
(330) | 143
(470) | | - 1. Circuit breakers are sized per article NFPA 70, National Electrical Code.. - 2. When using 2 or more heater cables of different wattage ratings in parallel on a single circuit breaker, use the 15A column amperage of 15 amps, divide it by the maximum footage to arrive at an amps/foot figure for each cable. You can then calculate circuit breaker sizes for these combination loads. These amps/ foot factors include the NEC sizing factor in Article 427-4. - 3. Heater cables with CB optional constructions contain a metal ground shield as required by Article 427-23 of the NEC. - 4. Article 427-22 of the NEC requires ground fault equipment protection for each branch circuit supplying electric heating equipment. Exceptions to this requirement can be found in NFPA 70, National Electrical Code. FM: Class I, Division 2, Groups B, C, D Class II, Division 2, Groups F, G Class III, Division 2 ## Maximum Allowable Wattage Based on Maintenance Temperature