

Operating & ATEX/IECEx Safety Instructions

KATflow 170Ultrasonic Flowmeter

Aluminium and stainless steel enclosures (Aluminium illustrated above)

Operating & ATEX/IECEx Safety Instructions KATflow 170 Version V19EN160420

Copyright © 2016
All rights reserved

KATflow 170 Operating and ATEX/IECEx Safety Instructions

Table of Contents

	Page
1 Safety instructions	5
1.1 Symbols used in these operating instructions	5
1.2 Safety instructions for the operator	6
1.3 Languages/translations	
1.4 Warranty	
1.5 Return policy	
1.6 Legislative requirements	
1 Introduction	8
1.1 System configuration	9
1.2 Approvals	
1.2.1 Clamp-on ultrasonic sensors	10
1.2.2 Flowmeter	
1.2.3 Certification marking	11
1.3 Temperature Limits	
1.3.1 Clamp-on ultrasonic sensors	11
1.3.2 Flowmeter	
1.4 Special conditions of safe use	
1.5 EC type examination certificates	
2 Installation	13
2.1 Unpacking and storage	12
2.1.1 Unpacking	
2.1.2 Storage	
2.1.3 Identification of components	
2.2 Clamp-on sensor installation	
2.3 Installation location	
2.4 Pipe preparation	
2.5 Clamp-on sensor mounting configurations and separation distance	
2.6 Sensor installation in hazardous areas	
2.7 Flowmeter installation in hazardous areas	
2.7.1 2" pipe mounting	
Flowmeter Outline Dimensions	
3 Electrical installation	
3.1 Cabling and junction box	
3.1.1 Signal cable parameters	
3.2 Cable glands	
3.3 Equipotential bonding	
3.3.1 Clamp-on ultrasonic sensors	
3.3.2 Flowmeter	
3.4 Process inputs/outputs	
3.5 Clamp-on sensor mounting	
3.5.1 Sensor pipe mounting configurations	
3.5.2 Acoustic coupling gel	
3.5.3 Correct positioning of the sensors	
3.5.4 Sensor mounting with tension straps	24

4 Operation	26
4.1 Switching On/Off	26
4.2 Keypad and display	
4.2.1 Keypad key functions	
4.2.2 Display functions	
4.3 Quick setup wizard.	
4.4 Measurements	
4.4.1 Main process value (PV)	30
4.4.2 Three Line display	
4.4.3 Diagnostic displays	
4.4.4 Totalisers	
4.4.5 Dual channel display mode	
4.4.6 Math display	
4.4.7 Datalogger	
5 Commissioning	33
5.1 Menu structure	33
5.2 Diagnostics [where specified]	37
5.3 Display settings	
5.4 Output configuration	
5.4.1 Serial interface RS 232	38
5.4.2 Serial interface RS 485	
5.4.3 Modbus RTU	
5.4.4 HART compatible output	
5.4.5 Analogue current output 0/4 20 mA	
5.4.6 Analogue voltage output 0 10 V	
5.4.7 Analogue frequency output	
5.4.8 Digital open collector output	
5.4.9 Digital relay output	
5.5 Input configuration	
5.5.1 PT100 inputs	
5.5.2 Analogue current input 0/4 20 mA	
5.6 Temperature compensation (TC) – [where installed]	
5.7 Sound velocity measurement (SVM)	
5.8 Dual-channel flow calculations (maths functions)	
5.9 Scope functions	42
6 Maintenance	43
6.1 Opening/closing the KF170 Ex d compartment	
6.2 Service/Repair	43
7 Troubleshooting	44
8 Technical data	46
O Consideration	
9 Specification	52
10 Index	54
Appendix A	55
Appendix B	56

KATflow 170 **1 Safety instructions**

1 Safety instructions

1.1 Symbols used in these operating instructions

Danger

This symbol represents an immediate hazardous situation which could result in <u>serious injury, death</u> or <u>damage to the equipment</u>. Where this symbol is shown, do not use the equipment further unless you have fully understood the nature of the hazard and have taken the required precautions.

Danger

This warning refers to an immediate danger when using the equipment in a hazardous area

Attention

This symbol indicates important instructions which should be respected in order to avoid damaging or destroying the equipment. Follow the the precautions given in these instructions to avoid the hazard. Call our service team if necessary.

Call service

Where this symbol is shown call our service team for advice if necessary.

Note

This symbol indicates a note or detailed set-up tip.

Information point.

Operator keys are printed in bold typeface and placed in pointed brackets.

KATflow 170 1 Safety instructions

1.2 Safety instructions for the operator

These safety instructions are applicable for sensor type K1Ex/K4Ex and KF170 transmitter installations in hazardous areas.

- Do not install, operate or maintain this flowmeter without reading, understanding and following the operating instructions, otherwise injury or damage may result.
- Study these operating instructions carefully before the installation of the equipment and keep them for future reference.
- Observe all warnings, notes and instructions as marked on the packaging of the equipment and detailed in the operating instructions.
- Do not change or alter the sensors or the transmitter. Unauthorized changes may affect the explosion safety of the equipment.
- The special conditions of use as described in the EC type examination certificate must be followed. In addition, all given electrical specifications must be met.
- The electrical installation must be in accordance with applicable national standards (equivalent to IEC 364) in addition to the requirements for installation in hazardous areas according to EN/IEC 60079-14 "Electrical installations in hazardous locations" or equivalent national standards.
- Installation, operation, service and maintenance of the equipment must only be performed by authorised and trained personnel with the necessary knowledge and qualifications in explosion safety.
- If the product does not operate normally, please refer to the service and troubleshooting instructions, or contact KATRONIC for help.

1.3 Languages/translations

These safety instructions are compiled in English. If English is not your native language and you have difficulties understanding the content of these instructions, please contact KATRONIC and/or your authorised local distributor for a translation of this text.

1.4 Warranty

- Any product purchased from KATRONIC is warranted in accordance with the relevant product documentation and as specified in the sales contract provided it has been used for the purpose for which it has been designed and operated as outlined in the operating instructions. Misuse of the equipment will immediately revoke any warranty given or implied.
- Responsibility for suitability and intended use of this ultrasonic flowmeter rests solely with the user. Improper installation and operation of the flowmeter may lead to a loss of warranty.
- Please note that there are no operator-serviceable parts inside the equipment. Any unauthorised interference with the product will invalidate the warranty.

1.5 Return policy

If the flowmeter has been diagnosed to have a problem, it can be returned to KAT-RONIC for repair using the Customer Returns Note (CRN) attached to the Appendix of this manual. KATRONIC regret that for safety reasons we cannot accept the return of the equipment unless accompanied by the completed CRN.

KATflow 170 **1 Safety instructions**

1.6 Legislative requirements

CE marking

The flowmeter is designed to meet the safety requirements in accordance with sound engineering practice. It has been tested and has left the factory in a condition in which it is safe to operate. The equipment is in conformity with the statutory requirements of the EC directive and complies with applicable regulations and standards for hazardous area equipment (2014/34/EU), and for electrical safety (EN 61010) and electromagnetic compatibility (EN 61326). A CE Declaration of Conformity has been issued in that respect, a copy of which can be found in Appendix B of these operating instructions.

WEEE Directive

The Waste Electrical and Electronic Equipment Directive (WEEE Directive) aims to minimise the impact of electrical and electronic goods on the environment by increasing re-use and recycling and by reducing the amount of WEEE going to land-fill. It seeks to achieve this by making producers responsible for financing the collection, treatment, and recovery of waste electrical equipment, and by obliging distributors to allow consumers to return their waste equipment free of charge.

KATRONIC offers its customers the possibility of returning unused and obsolete equipment for correct disposal and recycling. The Dustbin Symbol indicates that when the last user wishes to discard this product, it must be sent to appropriate facilities for recovery and recycling. By not discarding this product along with other household-type waste, the volume of waste sent to incinerators or landfills will be reduced and natural resources will be conserved. Please use the Customer Return Note (CRN) in Appendix B for return to KATRONIC.

RoHS Directive

All products manufactured by KATRONIC are compliant with the relevant aspects of the RoHS Directive.

1 Introduction

Clamp-on transit-time flowmeter The KATflow 170 is a fixed installation ultrasonic flowmeter designed for use in hazardous areas employing clamp-on sensors for the measurement of liquids in full, enclosed pipes. Flow measurements can be undertaken without interruption of the process or interference with the integrity of the pipeline. The clamp-on sensors are attached to the outside of the pipes. The KATflow 170 uses ultrasonic signals for measurement of the flow, utilising the transit-time method. The sensors of type K1Ex and K4Ex are equally suitable for use in hazardous areas. The KF170 flowmeter can only be used with ATEX or IECEx certified sensors.

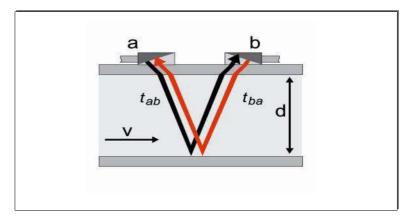


Illustration 1: Clamp-on ultrasonic flowmeter principle

Measuring principle

Ultrasonic signals are emitted by a transducer installed on a pipe and received by a second transducer. These signals are emitted alternately in the direction of flow and against it. Because the medium is flowing, the transit time of the sound signals propagating in the direction of flow is shorter than the transit time of the signal propagating against the direction of flow. The transit-time difference ΔT is measured and allows the determination of the average flow velocity along the path of acoustic propagation. A profile correction is then performed to obtain the average flow velocity over the cross-sectional area of the pipe, which is proportional to the volumetric flow rate.

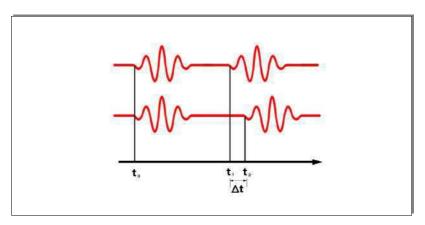


Illustration 2: Transit-time measuring principle

1.7 System configuration

The KF170 flowmeter and K1Ex and/or K4Ex sensors can be installed in Zone 1 or 2 hazardous areas with or without a certified optional junction box depending on the required cable distances. A maximum of 2 sensor pairs can be installed - if two pairs are installed these can be configured either in a 1-pipe dual-path or a 2-pipe single path configuration.

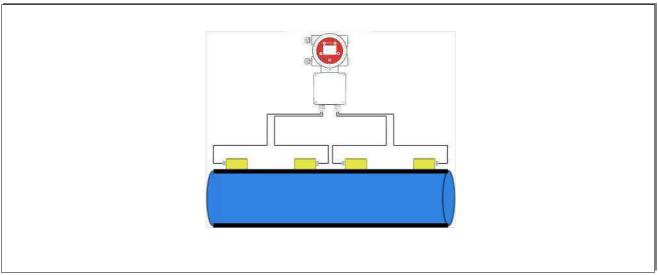


Illustration 3: KF170 with direct sensor connection in a 1-pipe 2-path configuration (Zone 1 or 2)

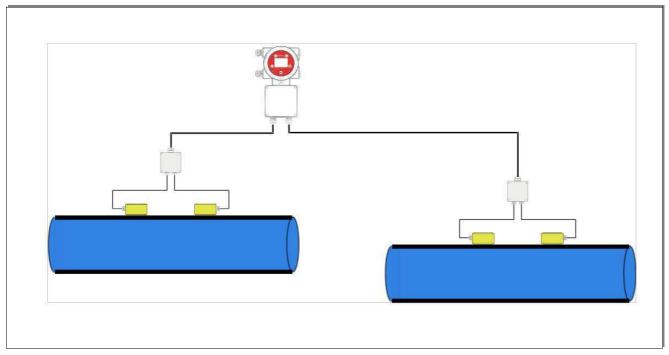


Illustration 4: KF170 2-pipe 1-path configuration using optional junction boxes(Zone 1 and 2)

1.8 Approvals

1.8.1 Clamp-on ultrasonic sensors

The clamp-on ultrasonic sensors are manufactured according to European Directive 2014/34/EU. This equipment has been approved for installation and use in hazardous classified areas of Zone 1 and 2 by the certification agency TRaC (ATEX notified body identification 0891). The protection method for the sensors is "encapsulation" as per EN/IEC 60079-18.

The K1Ex, K4Ex transducers meet the requirements of the following standards:

Standard	Description	
EN 60079-0 IEC 60079-0	Electrical equipment for use in explosive atmosphere – General requirements	
EN 60079-18 IEC 60079-18	Electrical equipment for use in explosive atmosphere – Encapsulation "m"	
EN 61241-0 IEC 61241-0	Electrical equipment for use in the presence of combustible dust – General requirements	
EN 61241-1 IEC 61241-1	Electrical equipment for use in the presence of combustible dust – Protection by encupsulation "maD, mbD"	
EN 61241-18 IEC 61241-18	Electrical equipment for use in the presence of combustible dust – Protection by enclosures "tD"	

Certificate number of the K1Ex and K4Ex sensors: TRAC 09 ATEX 21226 X

1.8.2 Flowmeter

The KATflow 170 flowmeter is available in epoxy-coated aluminium or in stainless steel. Both versions are certified for use in hazardous area Zone 1 or 2. K1Ex and K4Ex sensors are connected to the KATflow 170 either directly or through an Ex e certified junction box with cables provided by KATRONIC.

The protection method for the KF170 is "explosion-proof" Ex d and "increased safety" Ex e as per the following standards:

Standard	Description		
EN 60079-0 IEC 60079-0	Electrical equipment for use in explosive atmosphere – General requirements		
EN 60079-1 IEC 60079-1	Electrical equipment for use in explosive atmosphere – Flameproof "d"		
EN 60079-7 IEC 60079-7	Electrical equipment for use in explosive atmosphere – Increased safety "e"		
EN 61241-0 IEC 61241-0	Electrical equipment for use in the presence of combustible dust – General requirements		
EN 61241-1 IEC 61241-1	Electrical equipment for use in the presence of combustible dust – Protection by enclosures "tD"		

Certificate of the KF170 flowmeter: **EPS 11 ATEX 1355 X**

Certification coding: II 2G Ex db eb IIA/IIB T6

1.8.3 Certification marking (K1 sensors shown):

1.9 Temperature Limits

1.9.1 Clamp-on ultrasonic sensors

The K1Ex and K4Ex clamp-on ultrasonic sensors can be used for the following process temperatures depending on the Temperature Class specified for the application:

Gas groups:

Temperature Class	Process temperature range
T6	-50 +75 °C
T5	-50 +90 °C
T4	-50 +115 °C

Dust groups:

The ambient temperature is the limiting factor but cannot exceed +115 °C therefore the max. temperature designation is T80°C - T120°C.

1.9.2 Flowmeter

For KF170 flowmeters located in Zone 1 or 2 hazardous areas the ambient temperature range is -20 ... 60 °C. The unit is manufactured to a degree of protection of IP 66.

1.10 Special conditions of safe use

- The transducers must only be used in conjunction with a flowmeter unit (e.g. KF170) which conforms to the signal parameters and thermal protection conditions as outlines in the special conditions of safe use.
- The transducers must be securely fixed to the pipe to protect the PEEK surface of the sensors from mechanical impact and electrostatic charging.
- Where the connecting cable may be subject to mechanical damage then the user shall provide additional mechanical protection.

• Clause 7.9.2.1, EN60079-18: The circuitry must be protected from a mains transient fault by fuses and they shall be rated in accordance with IEC 60127 or ANSI/UL 248-1, the fuse time-current characteristic shall ensure that the Continuous Operating Temperature of the encapsulating compound and temperature class are not exceeded and shall have a breaking capacity greater than 1500 A. In addition, the fuses shall be non-resettable and shall only be replaced by opening the enclosure. The separation distance across the fuse shall meet Table 5 of EN60079-11 (met by KF170 electronics).

 Clause 10, EN60079-18: The pulsed supply to the transducers must not exceed 330 V at a maximum frequency of 4 MHz (met by KF170 electronics).

1.11 EC type examination certificates

See ATEX documentation pack.

2 Installation

2.1 Unpacking and storage

2.1.1 Unpacking

Care should be taken when opening the box containing the flowmeter, any markings or warnings shown on the packaging should be observed prior to opening. The following steps should then be taken:

- Unpack the flowmeter in a dry area.
- The flowmeter should be handled with care and not left in an area where it could be subject to physical shocks.
- If using a knife to remove packaging care should be taken not to damage the flowmeter or cables.
- The flowmeter package and contents should be checked against the delivery note supplied and any missing items reported immediately.
- The flowmeter package and contents should be checked for signs of damage during transport and any problems reported immediately.
- The vendor accepts no responsibility for damage or injury caused during the unpacking of the instrumentation supplied.
- Excess packing materials should be either recycled or disposed of in a suitable way.

2.1.2 Storage

If storage is necessary, the flowmeter and sensors should be stored:

- in a secure location,
- away from water and harsh environmental conditions,
- in such a way as to avoid damage,
- small items should be kept together in the bags provided to avoid loss.

2.1.3 Identification of components

The following items are typically supplied (please refer to your delivery note for a detailed description):

- KATflow 170 ultrasonic flowmeter
- Clamp-on sensors (one pair for single channel operation, two pairs for dual channel operation)
- Ex e junction box if not direct sensor connection (one junction box for single channel operation, two junction boxes for dual channel operation)
- Sensor connection cable(s) if not direct sensor connection
- Sensor mounting accessories
- Coupling component
- Operating instructions
- Project and hazardous area documentation
- Calibration certificate(s) (optional)

2.2 Clamp-on sensor installation

The correct selection of the sensor location is crucial for achieving reliable measurements and high accuracy. Measurement must take place on a pipe in which sound can propagate (see Acoustic propagation) and in which a rotationally symmetrical flow profile is fully developed (see Straight pipe lengths).

The correct positioning of the transducers is an essential condition for error-free measurements. It ensures that the sound signal will be received under optimal conditions and evaluated correctly. Because of the variety of applications and the different factors influencing the measurement, there can be no standard solution for the positioning of the transducers.

The correct position of the transducers will be influenced by the following factors:

- diameter, material, lining, wall thickness and general condition of the pipe,
- the medium flowing in the pipe,
- the presence of gas bubbles and solid particles in the medium.

Check that the temperature at the selected location is within the operating temperature range of the transducers (see Specification).

After the sensor location has been selected, make sure that that supplied cable is long enough to reach the flow transmitter mounting location. Ensure that the temperature at the selected location is within the ambient operating temperature range of the flow transmitter (see Specification).

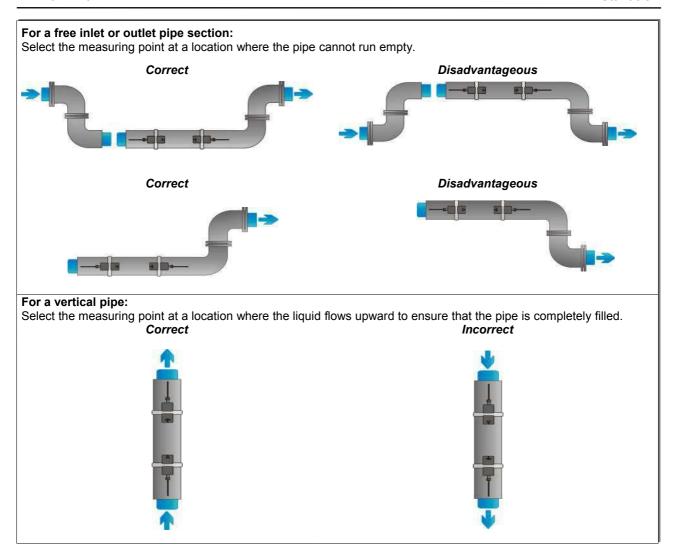
Acoustic propagation

Acoustic propagation is achieved when the flowmeter is able to receive sufficient signal from the transmitted ultrasonic pulses. The signals are attenuated in the pipe material, the medium and at each of the interfaces and reflections. External and internal pipe corrosion, solid particles and gas content in the medium contribute heavily to signal attenuation.

Straight pipe lengths

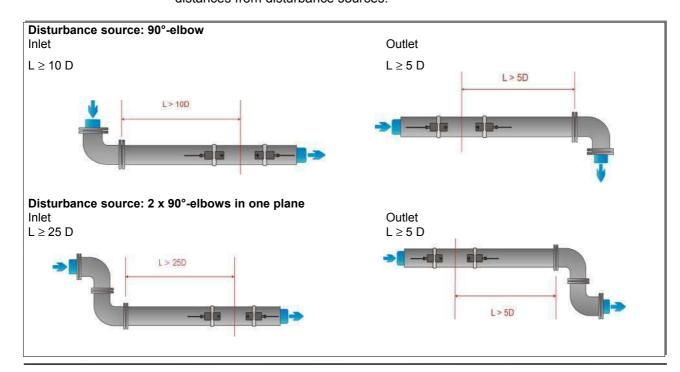
Sufficient straight lengths of pipe on the inlet and outlet of the measuring location ensure an axi-symmetrical flow profile in the pipe, which is required for good measurement accuracy. If insufficient straight lengths of pipe are available for your application measurements are still obtainable, but the certainty of the measurement can be reduced.

2.3 Installation location


Select an installation location following the recommendations below and try to avoid measuring

- in the vicinity of deformations and defects of the pipe,
- near welding seams,
- where deposits could be building up in the pipe.

For a horizontal pipe:


Select a location where the transducers can be mounted on the side of the pipe, so that the sound waves emitted by the transducers propagate horizontally in the pipe. In this way, the solid particles deposited on the bottom of the pipe and the gas pockets developing at the top will not influence the propagation of the signal.

Look for a sensor installation location with sufficient straight pipe to obtain accurate measurements. Please refer to the table below as a guideline for recommended distances from disturbance sources.

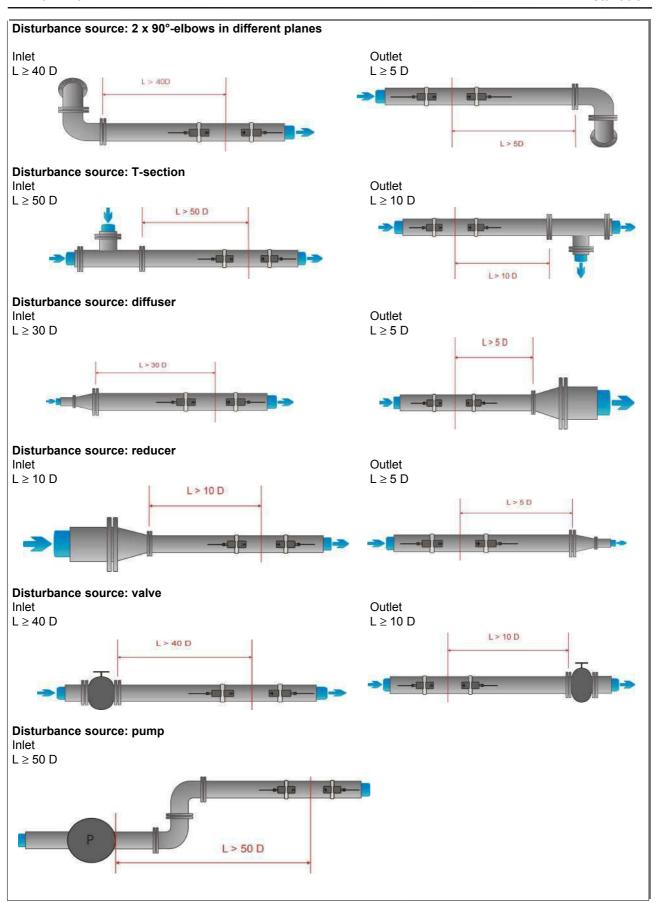


Table 1: Recommended distances from disturbance sources

2.4 Pipe preparation

- Clean dirt and dust from around the area of the pipework where the sensors are to be placed.
- Remove loose paint and rust with a wire brush or file.

Firmly bonded paint does not necessarily need to be removed provided the flowmeter diagnostics indicate sufficient signal strength.

2.5 Clamp-on sensor mounting configurations and separation distance

Reflection Mode

The most common clamp-on sensor mounting configuration is the Reflection Mode, sometimes known as V-Mode (see Illustration 3, sketch (1). Here, the ultrasonic signal passes twice through the medium (2 signal passes). The Reflection Mode is the most convenient mounting method as the transducer separation distance can be measured easily and the sensors can be accurately aligned. This method should be used whenever possible.

Diagonal Mode

An alternative mounting configuration (Illustration 3, sketch (3)) is the Diagonal mode (Z-Mode). The signals travel only once through the pipe. This method is often used for larger pipes where greater signal attenuation might occur.

Further variation of the Reflection and the Diagonal Modes are possible by altering the number of passes through the pipe. Any even number of passes will require mounting the sensors on the same side of the pipe, while with an odd number of passes, the sensors must be mounted on opposite sides of the pipe. Commonly, for very small pipes, sensor mounting configurations such as 4 passes (W-mode) or 3 passes (N-mode) are used (Illustration 3, sketch (2)).

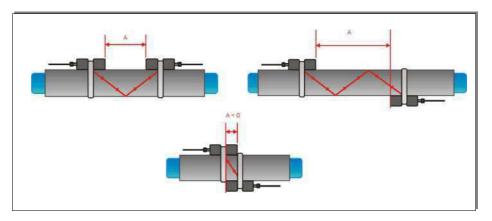


Illustration 5: Clamp-on sensor mounting configurations and sensor spacing

Transducer separation distance

The transducer separation distance A is measured from the inside edges of the sensor heads as shown in illustration 3. It is automatically calculated by the flow-meter based on the parameter entries for pipe outside diameter, wall thickness, lining material and thickness, medium, process temperature, the sensor type and the selected number of signal passes.

Sensor spacing

A negative separation distance A < 0 can occur for mounting configurations on small pipes where diagonal mode operation has been selected (see Illustration 3, sketch (3). Negative separation distances may be suggested for reflection mode installations, but are not possible. In these cases, use diagonal mode or a larger number of passes.

2.6 Sensor installation in hazardous areas

DANGER

The transducers must be securely fixed to the pipe to protect the PEEK surface of the sensors from mechanical impact and electrostatic charging.

Illustration 6: Sensor mounting with tension straps and clamps

2.7 Flowmeter installation in hazardous areas

2.7.1 2" pipe mounting

The KATflow 170 is intended for 2" mounting pole installations as shown in the following picture. Wall mounting is also possible but requires an optional bracket.

Flowmeter 2" pipe pole mounting

Illustration 7: 2" pipe mounted KF170

Flowmeter outline dimensions

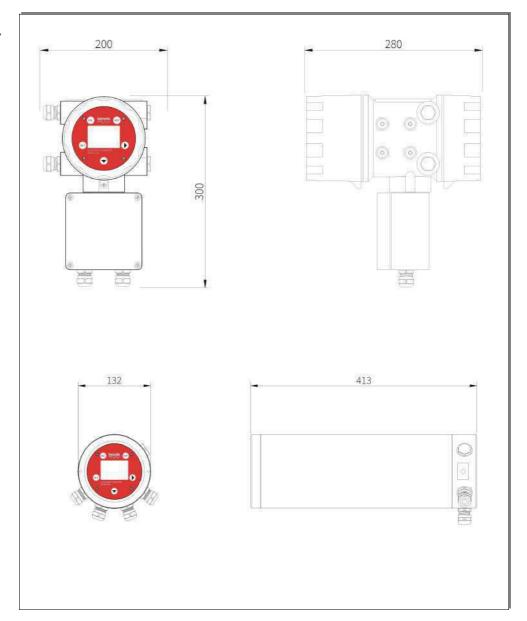
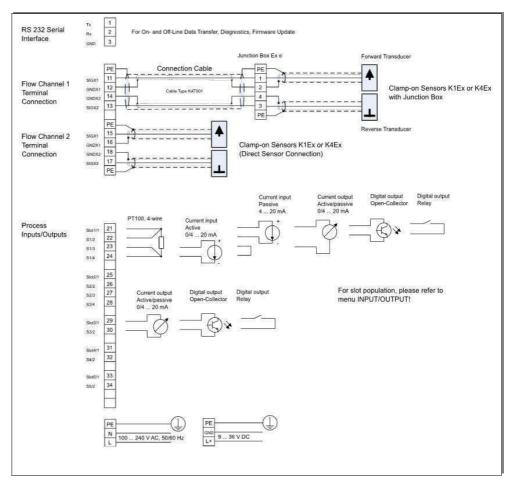


Illustration 8: KF170 Outline dimensions

3 Electrical installation


The wiring of the equipment must be in accordance with the requirements as specified in the relevant national or international standard for electrical installations in hazardous areas, e.g. EN/IEC 60079-14. Section 9 (wiring systems) of this standard applies to all protection concepts. Section 10 (additional requirements for protection concept "d" - explosion-proof enclosures) and section 11 (additional requirements for protection concept "e" - increased safety).

Electrical wiring

Please note that in order to supply the unit with MAINS POWER, the equipment must be protected by suitably sized switches and circuit breakers.

Drawing 1: Electrical connection diagram for the KATflow 170 flowmeter

3.1 Cabling and junction box

The hazardous area K1Ex and K4Ex sensors are manufactured with a standard cable length of 5 m. If this cable length is sufficient for the application, then the sensors can be connected directly to the flowmeter (direct cable connection).

For installations requiring longer cable lengths, the sensors are terminated at an Ex e (increased safety) certified junction box with approved terminals.

The electrical connection between the junction box and the flowmeter (signal cabling) is established using type KAT01 dual coax cable. The cable ends of the coaxial cables must be appropriately terminated with tinned ends or suitably sized ferrules. The signal cable is provided with the system. The maximum recommended signal cable length is 100 m.

DANGER

Where the connecting sensor and/or signal cable may be subject to mechanical damage then the user shall provide additional mechanical protection.

3.1.1 Signal cable parameters

The signal cable supplied with the instrument has the following parameters:

Total attenuation	0.021 dB/m
Capacitance (core/screen)	107 pF/m
Inductance (core/screen)	0.24 µH/m

3.2 Cable glands

The KF170 housing features 2 x M20 cable entries for the sensor cabling and 4 x M20 cable entries for power supply, communication and process input/output connections.

The KF170 housing is supplied with plastic dust caps. The temporary plugs are only intended for sealing the equipment against entry of dust, moisture or other possible ingress during transport, handling and storage. These dust caps must be replaced by suitable Ex e approved cable glands, stopping plugs or conduit adapters with respective sealing before the flowmeter is put into operation.

The installer is responsible for the correct sizing and selection of the Ex e approved cable glands for the explosion-proof box. Unused cable entries must be closed with suitable Ex e blind plugs. Ex e approved cable glands/blind plugs are not part of the standard delivery package and must be provided by the customer or explicitly ordered from KATRONIC.

The following Ex e cable glands are available from KATRONIC:

Cable gland	Cable diameter	Cable type
M20	10 14 mm	Power, communication, process in- put/output
M20	7 12 mm	Power, communication, process in- put/output
M20	2 x 6 mm	K1Ex, K4Ex direct sensor connection
M20	12 mm	System cable KAT01 from junction box
M20	Bind plug	

3.3 Equipotential bonding

3.3.1 Clamp-on ultrasonic sensors

The K1Ex and K4Ex sensors feature a terminal connection which must be used to connect the transducers to the equipotential bonding system locally.

3.3.2 Flowmeter

The KATflow 170 flowmeter must always be incorporated in the equipotential bonding system of the hazardous area installation. The explosion-proof housing of the KF170 features a screw terminal outside the housing, which must be earthed locally.

The earthing conductor must be at least 4 mm² (11 AWG) or 2.5 mm² (14 AWG) when mechanically protected as per IEC 364-4-41.

3.4 Process inputs/outputs

If the process inputs/outputs are to be terminated in the hazardous area, the associated equipment must be certified accordingly.

3.5 Clamp-on sensor mounting

Sensor mounting

Before the sensors can be mounted

- the installation location should have been determined,
- a sensor mounting method should be chosen,
- the flowmeter must be mechanically and electrically installed,
- the sensors must be connected to the flowmeter.

Depending on which sensor mounting method is being used, the clamp on sensors are either mounted on the same side of the pipe (Reflection Mode) or on opposite sides of the pipe (Diagonal Mode). The sensor spacing is calculated by the flow-meter from the pipe parameters entered.

3.5.1 Sensor pipe mounting configurations

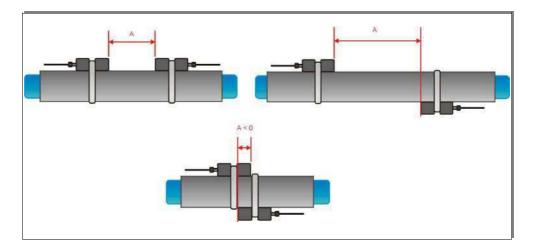


Illustration 9: Sensor pipe mounting configurations

3.5.2 Acoustic coupling gel

In order to obtain acoustical contact between the pipe and the sensors, apply a bead of acoustic coupling gel lengthwise down the centre of the contact area of the sensors

3.5.3 Correct positioning of the sensors

Correct sensor position

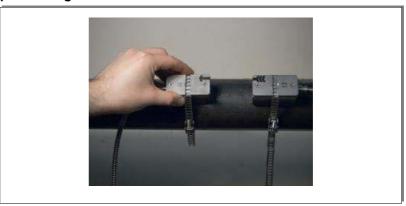


Illustration 11: Correct positioning of the sensors

Always mount the transducer pair so that the free front edges of the sensors face each other.

There is a different engraving on the top of each transducer. The transducers are mounted correctly if the engravings on the two transducers form an arrow. The transducer cables should point in opposite directions.

Later, the arrow, in conjunction with the indicated measured value, will help to determine the direction of flow.

The sensor separation distance is automatically calculated by the flowmeter based on the parameter entries for pipe outside diameter, wall thickness, lining material and thickness, medium, process temperature, the sensor type and the selected number of signal passes.

3.5.4 Sensor mounting with tension straps

Illustration 12: Metallic mounting straps

- Cut the tension straps to the appropriate length.
- Pull at least 2 cm of the tension strap through the slot in the clamp and bend the strap back to secure the clamp to the tension strap.
- Guide the other end of the tension strap through the groove on top of the sensor.
- Place the sensor onto the prepared pipe section.
- Hold the clamp on the transducer with one hand and guide the tension strap around the pipe.
- Pull the tension strap and guide the free end through the clamp so that the clamp hooks engage. Slightly tighten the screw on the clamp.
- Mount the second sensor in the same way.
- Press the sensors firmly onto the pipe. There should be no air pockets between the transducer surface and the pipe wall.
- Using a measuring tape, adjust the sensor separation distance as suggested by the flowmeter. When the sensor positioning screen is displayed, the middle bar allows fine adjustment of the sensor location.

 Ensure that the narrower side of the clip is above and inside the wider side and that the two sides of the clip do not come into contact while tightening, as this will prevent the strap from being correctly tensioned.

Illustration 14: Clip arrangement for correct tensioning

4 Operation

4.1 Switching On/Off

Switching On/Off

The flowmeter is switched on by connecting the power supply to the instrument. Disconnecting the external supply switches off the flowmeter.

4.2 Keypad and display

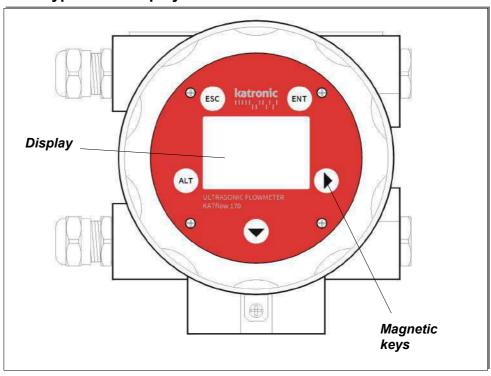


Illustration 15: Keypad and display overview

The keypad of the KF170 consists of 5 magnetic keys which can be operated from the outside of the enclosure using a magnetic pen. Hold the pen against the key area (red circle). The instrument acknowledges the activation of the key by turning the backlight off for a fraction of a second.

4.2.1 Keypad key functions

Key	Main function	Secondary function(s)	
RIGHT Arrow	Character position selection for data entry. Move RIGHT .	Screen selection in measurement mode	
DOWN Arrow	Move menu/list selection item DOWN	Character entry from scrolled characters, move in scrolled lists screen selection in measurement mode	
ALT	Backlight on/off		
ESC	ESCape menu item	Abort entry without saving, escape measurement mode	
ENT	ENTer menu item	Confirm and save entry or move through menu structure	

4.2.2 Display functions

Main measurement display

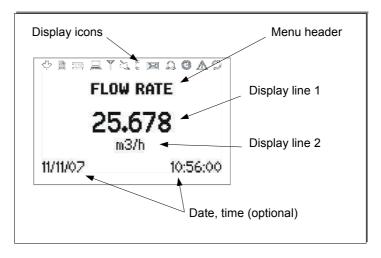


Illustration 16: Main display functions

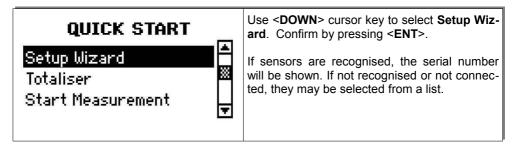
Display icons

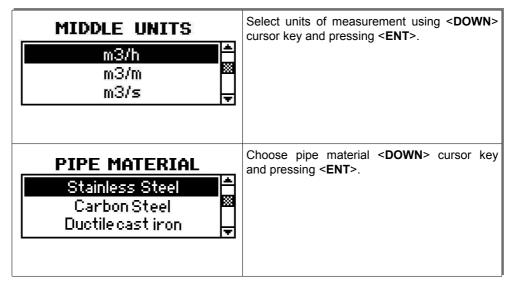
Display icon	Function		
wh.	On Off	Not used	
	On Off	Datalogger recording (where specified) Datalogger switched off	
	On Off	Not used	
(2333023)	On Off	Backlight switched on Backlight switched off	
	On Off	I/O processor error I/O processor functioning correctly	
	On Off	Without strike-through: Speaker on With strike-through: Speaker off	
	On Off	Poor sensor coupling, low SNR Sensor coupling OK	
	On Off	Not used	
	On Off	Not used	
(c)	On Off	Time/date set Clock error	

		On Off	Error recorded in error log No error detected
	G	On Off	Serial communication on (where specified) Serial communication off
F	"L", "T" or "LT"	Displays whether flow is laminar, turbulent or mixed	

Table 2: Display icons

4.3 Quick setup wizard


Quick start wizard


The quick setup wizard allows for a speedy setup of the most important parameters in order to achieve successful measurements in the shortest possible time:

(Note: Applying the magnetic pen can be considered pressing a key)

Display screen	Operation
MAIN MENU	The main menu is displayed after first power on and the boot-up sequence.
	Use <down> cursor key to select Quick</down>
	start . Confirm by pressing <ent></ent> .
In/Output 🔻	

Table 3: Quick setup wizard

OUTSIDE DIAMETER 76.1 mm WALL THICKNESS 3.4 mm	Enter outside pipe diameter using <down> and <right> cursor keys and confirm by pressing <ent>. Use the <down> key to select the required number or decimal point, use the <right> key to change to a different decimal position. If 0 is entered, an additional screen appears that allows entering the pipe circumference. Enter pipe wall thickness <down> and <right> cursor keys and confirm by pressing <ent>.</ent></right></down></right></down></ent></right></down>
INNER DIAMETER	Enter inner pipe diameter using alphanumeric keys and confirm by pressing <enter></enter> .
69.3	The value that appears here will have been calculted from the entered Outeside Diameter (or Cicumference) and Wall thickness. Entering a new value here will recalculate the Outside Diameter.
FLUID Water Saltwater Acetone	Select fluid using the <down> keys. Confirm by pressing <ent>.</ent></down>
TEMPERATURE 20.0 C	Enter process temperature using <down> and <right> cursor keys and confirm by pressing <ent>.</ent></right></down>
LINER MATERIAL None Epoxy Rubber ▼	Select pipe lining material using the <down></down> key. Confirm by pressing <ent></ent> .
PASSES Auto 1 2	Select transducer configuration (number of passes) using the <down> key. Auto Automatically 1 1 pass, diagonal mode 2 2 passes, reflection mode 3 3 passes, diagonal mode 4 4 passes, reflection mode etc. Confirm by pressing <ent>.</ent></down>

CHNL1 SENSOR

Spacing 110.5 mm Using 2 passes Signal 26 dB

Sensor positioning screen: Mount transducers with suggested spacing and use middle bar for fine adjustment of position (central position is desired). Observe signal-to-noise (upper bar) and quality (lower bar). These should be of identical length.

Confirm by pressing **<ENT>** to obtain measurements on screen.

Note: Numbers shown are for indication only.

4.4 Measurements

4.4.1 Main process value (PV)

Measurement screens

Measurement is started using the Quick Setup Wizard. Once all the parameters are programmed, any subsequent power-on sequences will immediately give the main PV as a display and/or as an output as appropriate.

Display screen	Operation
FLOW RATE	The main process value can be changed using accessing the menu structure.
25.678	Press <esc></esc> at any time to view the main menu.
m3/h 11/11/07 10:56:00	Change to other measurement and diagnostic screens by pressing the <right> and <down> keys.</down></right>

4.4.2 3-line display format

Display screen	Operation
CHNL-1	The three-line display screen is configureable to show flow, totalizers and diagnostic
- 0.0 m3	functions.
25.678 m3/h 1.370 m/s	Change to other measurement and diagnostic screens by pressing the <right> and</right>
11/11/07 10:56:0	<down></down> keys.

4.4.3 Diagnostic displays

Diagnostic screens are activated by pressing **<RIGHT>** and then **<DOWN>**.

Diagnostic screens

Display screen		Operation
DIAGNOSTIC 1		Line 1 shows the amplifier gain.
55.2	2 Gain	Line 2 displays the signal strength.
20.5 Signal -10.0 Noise		Line 3 indicates the noise.
11/11/02	10:56:00	Change to more diagnostic displays by pressing <down></down> .

4.4.4 Totalisers

The totaliser displays will only be shown when the totalisers are activated.

Totalisers

Display screen	Operation
TOTALISER-1 - 0.0 m3	The flow totaliser can be started or reset by selecting "Totaliser" from the main menu.
0.0 + - 0.0 - 11/11/07 10:56:00	The totaliser can be viewed on the three line display as shown or by selecting a quantity as the middle unit. View the three line menu by pressing the <right></right> key.

4.4.5 Dual PV display (multi-channel meters)

Display screen		Operation
DUAL-1 37.3 m3/h 1.370 11/11/07	10:56:00	Line 1 shows the PV on the selected channel. Line 2 shows the selected units. Line 3 shows the PV on the other channel (in its selected units) Change to other measurement and diagnostic screens by pressing the <right> and <down> keys.</down></right>

4.4.6 "Math" display (when enabled on multi-channel meters)

Display screen	Operation
MATH-1 27.678 AVE m3/h	Displays the "Math" function (when enabled). Sum, diffierence, average and maximum can be selected in the "Calculation" menu. "Average" shown in illustration. Change to other measurement and diagnostic
11/11/07 10:56:00	screens by pressing the <right> and <down> keys.</down></right>

4.4.7 Datalogger

The datalogger is enabled from the Main Menu, and operates when a non-zero value is entered for the interval.

Items to be logged are selected from the "Selection" screen. "ENTER" selects items, "0" deselects. Up to ten items may be selected.

(Note: If no items are selected the logger will record blank space)

Send logger by serial port to a terminal program by selecting "Log download".

Clear the logger by selecting "Log Erase".

Remaining logger space can be seen in the Diagnostic displays.

Logged data can be downloaded, viewed and exported using the KatData+ software except when "wrap" mode has been enabled.

5 Commissioning

5.1 Menu structure

Alternative specifications are shown in light grey.

Menu structure

Main menu	Menu level 1	Menu level 2	Description/settings
Quick Start			
	Setup Wizard		
		Sensor type	Indication of sensor type and serial number if automatically detected, otherwise select from list ↑↓ K1N,K1L,K1E,K1Ex,K1P, K4N,K4L,K4E,K4Ex,K4P, K0, M, Q, Special
		Middle (main displayed) Units	Select from list where available ↑↓ m/s, f/s, in/s, m3/h, m3/min, m3/s, l/h, l/min, l/s, USgal/h, USgal/min, USgal/s, bbl/d, bbl/h, bbl/min, g/s, t/h, kg/h, kg/min, m3, l, Usgal, bbl, g, t, kg, W, kW, MW, J, kJ, MJ, Signal dB, noise dB, SNR (dB), C m/s (sound speed), CU (housing temperature), K (correction factor), REY (Reynolds number), SOS, DEN, KIN, SHC (sound speed, density, kinematic viscosity, Specific Heat Capacity from inputs/calculation), TEMP (specified or measured fluid temperature), PRESS (specified or measured fluid pressure), Tin, Tout (inlet and outlet temperature) Other (Assignable input or calculated value), Math (Calculated value – see below).
		Pipe material	Select from list ↑↓ Stainless steel, Carbon steel Ductile cast iron, Grey cast iron Copper, Lead PVC, PP, PE, ABS Glass, Cement, User
		Pipe c-speed	Only if user pipe material selected 600 6553.5 m/s
		Outside diameter	6 6500 mm
		Wall thickness	0.5 75 mm
		Inner diameter	6 6500 mm
		Fluid	Select from list ↑↓ Water, Salt water Acetone, Alcohol, Ammonia Carbon Tet (carbon tetrachloride) Ethanol, Ethyl alcohol, Ethyl ether Ethylene glycol, Glycol/water 50% Kerosene, Methanol, Methyl alcohol Milk, Naphtha, Car oil Freon R134a, Freon R22 Hydrochloric acid, Sour cream, Sulphuric acid Toluene, Vinyl chloride User (enter kinematic viscosity, density, medium c-speed)
		Kinematic vis- cosity	Only if user fluid selected 0.001 30000 mm²/s
		Density	Only if user fluid selected 100 2000 kg/m ³

		Medium c-	Only if user fluid selected
		speed	800 3500 m/s
		Temperature	-30 300 °C
		Liner Material	Select from list ↑↓ None, Epoxy, Rubber, PVDF, PP, Glass, Cement, User (liner c-speed)
		Liner c-speed	Only if lining material selected 600 6553.0 m/s
		Liner thickness	Only if lining material selected 1.0 99.0 mm
		Passes	Select from list ↑↓ Auto 1 16
	Totaliser		Off, On Reset+ (positive total), Reset - (negative total) Reset both
Installation			
	Pipe		
		Material	Select from pipe material list ↑↓
		Outside dia- meter	6 6500 mm
		Wall thickness	0.5 75 mm
		C-speed	600 6553.5 m/s
		Circumference	18.8 20420.4 mm
		Roughness	0.0 10 mm
	Medium		
		Fluid	Select from fluid list ↑↓
		Kinematic (viscosity)	0.001 30000 mm²/s
		Density	100 2000 kg/m ³
		C-speed	800 3500 m/s
	Lining	Temperature	-30 300 °C
		Material	Select from material list ↑↓
		Thickness	1 99 mm
		C-speed	600 6553.0 m/s
	Passes		
		Passes	Select from list ↑↓
Display		Units - Top, middle, bottom line	Select from unit list ↑↓
		Damping	Reduces fluctuations in the display output 1 255 s
In/Output		Туре	Lists available input/output slots Possible configurable settings below [where specified]
	Current out	Source	Off Channel 1, Channel 2 System, Test
		Units	Select from list ↑↓
		Min Value	Min. process variable (PV) value that corresponds to 0/4 mA
		Max Value	Max. process variable (PV) value that corresponds to 20 mA

	Damping	Additional smoothing of the current output, the higher the damping factor, 1 255 s
	Span	0 20 mA or 4 20 mA
	Error	Defines output behaviour in the event of error Select from list ↑↓ Hold (last value for specified time), 3.8 mA, 21.0 mA
Voltage out	Source	Off Channel 1 System
	Units	Select from list ↑↓
	Min Value	Min. process variable (PV) value that corresponds to 0 V
	Max Value	Max. process variable (PV) value that corresponds to 10 V
	Damping	Additional smoothing of the current output, the higher the damping factor, 1 255 s
	Error	Defines output behaviour in the event of error Select from list ↑↓
Frequency out	Source	Off Channel 1 System
	Units	Select from list ↑↓
	Min Value	Min. process variable (PV) value that corresponds to minimum frequency
	Max Value	Max. process variable (PV) value that corresponds to maximum frequency
	Damping	Additional smoothing of the current output, the higher the damping factor, 1 255 s
	Error	Defines output behaviour in the event of error Select from list ↑↓
Pulse Out		
	Source	Select from list ↑↓
	Units	Select from unit list ↑↓
	Mode	Select from list ↑↓ Alarm (select on point, off point) Pulse (select value, width) Linear (select min value, max value, damping)
Relay Out		
	Source	Select from list ↑↓
	Units	Select from unit list ↑↓
	Mode	Select from list ↑↓ Alarm (select on point, off point) Pulse (select value, width) Linear (select min value, max value, damping)
Current In		
	Source (channel)	Select from list ↑↓ Off, Channel 1, Channel 2, Math 1, Math 2 System, Test
	Source (value)	Select from list ↑↓ Density, Viscosity, Temperature, Other
		Minimum, Maximum, Span settings as on outputs
PT100		Temperature inputs
	Source	Fixed – A fixed temperature can be entered under value

			PT100 – Value read from PT100 temperature sensor in °C
		Value	Enter fixed user defined value 0 250 °C
		Offset	Enter fixed user defined value -100 100 °C
	RS 485		[where specified]
	Modbus RTU		[where specified]
	HART		[where specified]
System			
	Instrument information		
		Model Code	170
		Serial No.	Example: 17000026
		HW Revision	Hardware version (system, ultrasonic board)
		SW Revision	Software version (system, ultrasonic board)
	Calculation		
		Low F Cut	± Low flow velocity cut off 0 0.025 m/s
		Max F Cut	± Maximum flow velocity cut off 0 30 m/s
		Corrected	Apply flow velocity profile correction Yes, No
		PV Offset	Calibration process variable zero offset -30 30 units
		PV Scaling	Calibration process variable gradient scaling 0 10000 units
		Zero Cal	Zero calibration settings
		Zero	Perform auto zero calibration Yes, No
		Track	Track zero offset Yes, No
		Delta	Zero flow delta time offset in ns, read from sensor PROM or entered directly for special sensors
		Timeup	Upstream transit-time offset in µs, allows for fixed delays in special sensors, buffer rods and extension leads
		Math Functions	None, sum, difference, average, maximum
		Heat Capacity	Specific heat capacity of medium
	User		
		Identifier	Example: Pump P3A 9 character string
		Tag No.	Example: 1FT-3011 9 character string
		Password	Four digit operator code
	Test		
		Installation	Control system simulation: 60 second increase of flow velocity in m/s from 0 to programmed Max F Cut, then 60 second decrease, i.e. the process variable changes over complete possible range. All configured outputs exhibit their programmed behaviour. Yes/No
			Test modes also available for display, keypad, memory, peripheral and ultrasonic components

	Settings		
		Date, Time, Date Format	Enter or select from list
		Language	Select from list ↑↓(as available) English, German, French
		Keypad	Enable keypad sound Yes/No
	Defaults		Reload factory default settings, except date/time Yes/No
Diagnostics			[where specified]
Datalogger			[where specified]
	Interval		Enter logging interval in seconds ('0' for off, 0999s)
	Selection		Select up to 10 items from list ↑↓ m/s, f/s, in/s, m3/h, m3/min, m3/s, l/h, l/min, l/s, USgall/h, USgall/min, USgall/s, bbl/d, bbl/h, bbl/min, g/s, t/h, kg/h, kg/min, m3, l, Usgall, bbl, g, t, kg W, kW, MW, J, kJ, MJ, Sig dB (signal), noise dB, SNR, C m/s (sound speed), CU (housing temperature) SOS, DEN, KIN, SHC (medium parameters) TEMP, Tin, Tout (compensation, inlet and outlet temperature) Math
	Low memory		Logger space remaining at low memory alarm
	Log Wrap		Saves "selected" items as a continuous stream without headers (Note : this means files cannot be processed by KATData+) Yes/No
	Log Download		Send logger data using communication port
	Log Erase		Erase data on logger (clear logger)
Serial Comms			[where specified]
	Mode		Select from list ↑↓ None, Printer (continuous 1 s serial ASCII output), Diagnostic, Download (logger), Calibration test (factory)
	Baud		Select from list ↑↓ 9600, 19200, 57600, 115200
	Parity		Select from list ↑↓ None, Even, Odd
	Туре		RS232, RS485, etc. (as installed)

Table 4: Firmware menu structure

5.2 Diagnostics [where specified]

Diagnostic screens, where specified, can be viewed directly during measurement through the menu structure.

5.3 Display settings

The main Process Value (PV) is the primary measurement data. Customer specific settings for data to be displayed can be set in the appropriate menu items. The PV can be selected from a list of available items.

5.4 Output configuration

The assignment of output slots is detected by the flowmeter, and will be as appears in the table in the "In/Output" menu - first line = Slot 1, second line = Slot 2 etc.

Example with passive current input on slot 1 and active current output on slot 2 shown below:

Serial interfaces

5.4.1 Serial interface RS 232

The RS 232 serial interface can be used to transmit data on-line over distances up to 15 m or for device configuration and maintenance tasks.

5.4.2 Serial interface RS 485

The RS 485 serial interface can be used to transmit data on-line for distances up to 1200 m. This is achieved by directing the ASCII printer output via the RS 485 interface.

5.4.3 Modbus RTU

The RS 485 interface is used for networking up to 32 flowmeters to a centralised computer system. Each flowmeter is given an unique address to be able to communicate effectively. The communication protocol used conforms to the conventions of the Modbus RTU protocol, a description of which is given in a separate document. Please refer to customer support for further information.

Wiring		[1]	Master device	
	Modbus RTU slave (optional)	2 3 4 B	3 A Term nating 100 Ohm 4 B resistor	
Setup	Please refer to customer support.			
Operation	Please refer to customer support.			

5.4.4 HART compatible output

The KF170 can also be configured with an optional module which responds to output commands conforming to the HART protocol. Please refer to customer support for further information.

HART® is a registered trademark of the HART Communication Foundation.

Wiring	HART (optional)	1 L 2 3 4	220 Oh HART Modern	m GND +24 V DC	
Setup	Please refer to customer support.				
Operation	Please refer to customer support.				

Analogue outputs

5.4.5 Analogue current output 0/4 ... 20 mA

The analogue current outputs operate in a 4 ... 20 mA or 0 ... 20 mA span.

Current outputs may be assigned to process values in the "mode" section of the output menu. The outputs can be programmed and scaled within the menu structure.

Wiring	Active I out (optional)	$ \begin{array}{c cccc} \hline 1 & I & \\ \hline 2 & 3 \\ \hline 4 & 30 \text{ V DC} \longrightarrow \end{array} $
	(optional)	2 + 1+
Electrical characteristics	Passive: U = 9 30 V, R _{Loac} accuracy 0.1 % of MV	20 mA passive options nain electronics and from other I/O's d = 50 Ohm typical, resolution 16 bit, = 30 V, resolution 16 bit, accuracy 0.1 % of

5.4.6 Analogue voltage output 0 ... 10 V

Voltage outputs may be assigned to process values in the "mode" section of the output menu. The outputs can be programmed and scaled within the menu structure.

Wiring	Volts out (optional)
Electrical characteristics	Galvanically isolated from main electronics and from other I/O's Range 0 10 V, R_{load} = 1000 Ohm, resolution 16 bit, accuracy 0.1 % of MV

5.4.7 Analogue frequency output

Frequency outputs may be assigned to process values in the "mode" section of the output menu. The outputs can be programmed and scaled within the menu structure.

Wiring	Frequency (analogue output) (optional)
Electrical characteristics	Galvanically isolated from main electronics and from other I/O's Open-Collector circuit, range 210000 Hz, U = 24 V, I _{max} = 4 mA

Digital outputs

5.4.8 Digital open collector output

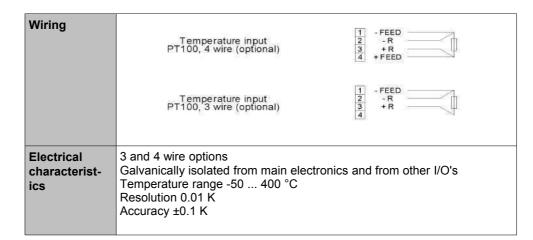
Open-Collector outputs may be assigned to process values in the "mode" section of the output menu. The outputs are configured using the menu structure.

The totaliser function is enabled and controlled using the menu structure.

Wiring	Optically switched relay "Open-Collector" (optional)	* 1 2 2 3 4	, NO — NO — NO — NO — NC — NC — NC — NC —
Electrical characteristics	Galvanically isolated from main el Totaliser pulse value 0.011000 type available, width 1 990 ms,	1/unit, active hig	h and active low switch

5.4.9 Digital relay output

Relay outputs may be assigned to process values in the "mode" section of the output menu. The relay outputs are configured using the menu structure.



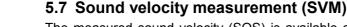
Wiring	1 — NO — N
Electrical characteristics	Form A (SPDT-NO and NC) contacts Width 3 990 ms U = 48 V, I _{max} = 250 mA Galvanically isolated from main electronics and from other I/O's Operating modes: Alarm, fault, totaliser (programmable) 1 off form A (SPST-NO) contacts 1 of form A (SPST-NC) contacts

5.5 Input configuration

5.5.1 PT100 inputs

Inputs

5.5.2 Analogue current input 0/4 ... 20 mA


Wiring	Analogue input (optional) Analogue input (optional)	1 - 1 in 1 in 4 30 V DC	
Electrical characteristics	Active (top) or passive (bottom) variants Measuring range active 0 20 mA at 30 V Measuring range passive 4 20 mA Accuracy 0.1 % of measured value		

5.6 Temperature compensation (TC) – [where installed]

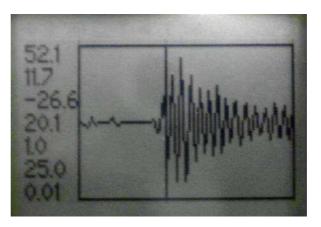
With temperature compensation enabled the temperature dependency of the medium in relation to speed-of-sound, viscosity and density calculations will be compensated for. This is in particular useful for hydrocarbon measurement applications.

The In/Output menu will then allow the user to select the temperature input source; either PT100 temperature sensors or via a 0/4 ... 20 mA input channel.

The measured sound velocity (SOS) is available as a Process Value and as diagnostic function (where specified) during measurement and may be applied to a Process Output by selecting "C m/s" from the appropriate menu.

This option is used for speed-of-sound, interface detection, product recognition, pig detection and concentration measurement applications.

5.8 Dual-channel flow calculations (maths functions)


Where suitably equipped, dual channel calculations are available from the System/Calculation/Math menu.

These allow the user to select the sum, difference, average (mean) or maximum of the two flow channels.

This value may be displayed or applied to a Process Output by selecting MATH from the appropriate output menu.

5.9 Scope function

Katronic flowmeters have an additional scope function which shows a representation of the pulse received by the sensors on Channel 1.

In addition to displaying the received pulse, this screen lists the following data (from top to bottom):

Gain (dB)
Signal (dB)
Noise (dB)
Transit time (us)
Delta (ns) - [time downstream minus time upstream]
Control unit temperature (degC)
Flow (m/s)

KATflow 170 6 Maintenance

6 Maintenance

The KATflow 170 flowmeters are maintenance free concerning the flow measurement functions. Within the scope of periodic inspections required for electrical equipment installed in hazardous areas, regular inspection for signs of damage or corrosion is recommended for the transducers, the junction box if installed, and the explosion-proof flowmeter housing.

6.1 Opening/closing the KF170 Ex d compartment

DANGER

The following instructions must always be carefully followed if opening the Ex d compartment of the KF170 transmitter. Ensure similar care is taken to close it when work is complete.

Before opening:

- Make certain that there is no explosion hazard.
- Site policies must be followed and all required documentation obtained before commencing work.
- Make sure that all connecting cables are safely isolated from all external sources.
- Allow the electronics to de-energize before opening the electronics compartment of the explosion-proof housing. Wait at least 10 minutes before opening.
- When the instructions above have been strictly followed, the cover of the explosion-proof compartment may be opened. Unlock the locking screw and carefully turn the cover.

Closing:

 Screw the cover of the Ex d compartment and tighten it firmly and lock it with the locking screw using a suitable Allen key.

6.2 Service/Repair

The KATflow 170 flowmeter has been carefully manufactured and tested. If installed and operated in accordance with the operating instructions, no problems are usually experienced.

Should you nevertheless need to return a device for inspection or repair, please pay attention to the following points:

- Due to statutory regulations on environmental protection and safeguarding the health and safety of our personnel, the manufacturer may only handle, test and repair returned devices that have been in contact with products without risk to personnel and environment.
- This means that the manufacturer can only service this device if it is accompanied by a Customer Return Note (CRN) confirming that the device is safe to handle.

If the device has been operated with toxic, caustic, flammable or water-endangering products, you are kindly requested:

- to check and ensure, if necessary by rinsing or neutralising, that all cavities are free from such dangerous substances,
- to enclose a certificate with the device confirming that is safe to handle and stating the product used.

KATflow 170 7 Troubleshooting

7 Troubleshooting

Should there be the need to call customer service, please let us know the following details:

- Model code
- Serial number
- SW, HW revision
- Error log list

Possible error messages may include the following:

Error list

Error message	Group	Description	Error handling
USB INIT FAIL	Hardware	Internal board communication error	Power on/off, otherwise call customer support
NO SERIAL NO.	Hardware	Failed to read from FRAM	Call customer support
NO VERSION NO.	Hardware	Failed to read from FRAM	Call customer support
PARA READ FAIL	Hardware	Failed to read from FRAM	Load defaults, other- wise call customer sup- port
PARA WRITE FAIL	Hardware	Failed to write to FRAM	Load defaults, other- wise call customer sup- port
VAR READ FAIL	Hardware	Failed to read from FRAM	Call customer support
VAR WRITE FAIL	Hardware	Failed to write to FRAM	Call customer support
SYSTEM ERROR	Hardware		Call customer support
VISIBILITY ERR	Hardware	Failed to read from FRAM	Call customer support
FRAM LONG WRITE ERR	Hardware	Failed to write to FRAM	Call customer support
FRAM READ ERR	Hardware	Failed to read from FRAM	Call customer support
RTC ERR	Hardware	Real Time Clock failure	Power on/off, otherwise call customer support
EXTMEM ERR	Hardware	Logger memory failure	Power on/off, otherwise call customer support
SPI ERR	Hardware	SPI bus failure	Power on/off, otherwise call customer support
I2C ERR	Hardware	I2C bus failure	Power on/off, otherwise call customer support
MATH ERR	Software	Internal calculation error	Call customer support
STACK ERR	Software	Internal calculation error	Call customer support
ADDR ERR	Software	Internal calculation error	Call customer support
OSC ERR	Software	Internal calculation error	Call customer support
ADC ERR	Software	Internal calculation error	Call customer support
IO ERR	Software	Internal calculation error	Call customer support
TIMING ERR	Software	Internal calculation error	Call customer support
COMM INIT ERR	Hardware	Internal communication error	Power on/off, otherwise call customer support
COMM START ERR	Hardware	Internal communication error	Power on/off, otherwise call customer support
COMM HS0 ERR	Hardware	Internal communication error	Power on/off, otherwise call customer support

KATflow 170 7 Troubleshooting

COMM HS1 ERR	Hardware	Internal communication error	Power on/off, otherwise call customer support
COMM READ AVE ERR	Hardware	Internal communication error	Power on/off, otherwise call customer support
COMM READ RAW ERR	Hardware	Internal communication error	Power on/off, otherwise call customer support
COMM READ HIS- TORY ERR	Hardware	Internal communication error	Power on/off, otherwise call customer support
COMM CRC ERR	Hardware	Internal communication error	Power on/off, otherwise call customer support
SENSOR COUP- LING ERR	Application	Weak sensor coupling, low SNR	Recouple sensors, check installation, re- duce number of passes, look for other location, call customer support

Table 5: Error messages

7.1 Data download difficulties

If difficulties are encountered downloading the logger data: -

- Check that the flowmeter is switched on and not in measurement mode.
- Check that the same number COM port is allocated in the "Device Manager" (or equivalent) as is set in the KatData+ software.
- Check that the settings (baud, parity, word length, stop bits) are identical.
- Use the supplied connectors whether connecting to a 9-pin COM port or converting from serial communication to a Universal Serial Bus (USB).
- Is the logger in "Wrap" mode? If "yes", use a terminal program and the "Log download" command. If "No", KatData+ software may also be used.

KATflow 170 8 Technical data

8 Technical data

Material

m/s	ft/s
3,150	10,335
3,230	10,598
3,235	10,614

Sound Speed* Shear Wave (at 25 °C)

Steel, 1% Carbon, hardened	3,150	10,335
Carbon Steel	3,230	10,598
Mild Steel	3,235	10,614
Steel, 1% Carbon	3,220	10,565
302 Stainless Steel	3,120	10,236
303 Stainless Steel	3,120	10,236
304 Stainless Steel	3,141	10,306
304L Stainless Steel	3,070	10,073
316 Stainless Steel	3,272	10,735
347 Stainless Steel	3,095	10,512
Aluminium	3,100	10,171
Aluminium (rolled)	3,040	9,974
Copper	2,260	7,415
Copper (annealed)	2,325	7,628
Copper (rolled)	2,270	7,448
CuNi (70%Cu 30%Ni)	2,540	8,334
CuNi (90%Cu 10%Ni)	2,060	6,759
Brass (Naval)	2,120	6,923
Gold (hard-drawn)	1,200	3,937
Inconel	3,020	9,909
Iron (electrolytic)	3,240	10,630
Iron (Armco)	3,240	10,630
Ductile Iron	3,000	9,843
Cast Iron	2,500	8,203
Monel	2,720	8,924
Nickel	2,960	9,712
Tin (rolled)	1,670	5,479
Titanium	3,125	10,253
Tungsten (annealed)	2,890	9,482
Tungsten (drawn)	2,640	8,661
Tungsten (carbide)	3,980	13,058
Zinc (rolled)	2,440	8,005
Glass (pyrex)	3,280	10,761
Glass (heavy silicante first)	2,380	7,808
Glass (light brate crown)	2,840	9,318
Nylon	1,150	3,772
Nylon, 6-6	1,070	3,510
Polyethylene (LD)	540	1,772
PVC, CPVC	1,060	3,477
Acrylic	1,430	4,690
PTFE	2,200	7,218

^{*} Please note these values are to be considered nominal. Solids may be inhomogeneous and anisotropic. Actual values depend on exact composition, temperature, and to a lesser extent, on pressure

KATflow 170 8 Technical data

All data given at 25 °C (77 °F) unless otherwise stated

		All data given a	at 25 °C (7	7 °F) unie			
			Sound S	Speed	Change v/ºC	Viscosity (Kinemati	c)
Substance	Chemical Formula	Specific Gravity	m/s	ft/s	m/s/°C	mm²/s	X10-6 ft ² /s
Acetic anhydride	(CH3CO)2O	1.082 (20 °C)	1,180	3,871.4	2.5	0.769	8.274
Acetic acid, anhydride	(CH3CO)2O	1.082 (20 °C)	1,180	3,871.4	2.5	0.769	8.274
Acetic acid, nitrile	C2H3N	0.783	1,290	4,232.3	4.1	0.441	4.745
Acetic acid, ethyl ester	C4H802	0.901	1,085	3,559.7	4.4	0.467	5.025
Acetic acid, methyl ester	C3H6O2	0.934	1,211	3,973.1		0.407	4.379
Acetone	C3H6O	0.791	1,174	3,851.7	4.5	0.399	4.293
Acetylene dichloride	C2H2Cl2	1.26	1,015	3,330.1	3.8	0.400	4.304
Alcohol	C2H6O	0.789	1,207	3,960	4.0	1.396	15.02
Ammonia	NH3	0.771	1,729 (33 °C)	- 5,672.6 (-27 °C)	6.68	0.292 (-33 °C)	3.141 (-27 °F)
Benzene	C6H6	0.879	1,306	4,284.8	4.65	0.711	7.65
Benzol	C6H6	0.879	1,306	4284.8	4.65	0.711	7.65
Bromine	Br2	2.928	889	2,916.7	3.0	0.323	3.475
n-Butane(2)	C4H10	0.601 (0°C)	1,085 (5° C)	- 3,559.7 (23 °C)	5.8		
2-Butanol	C4H10O	0.81	1,240	4,068.2	3.3	3.239	34.851
sec-Butylalcohol	C4H10O	0.81	1,240	4,068.2	3.3	3.239	34.851
n-Butyl bromide (46)	C4H9Br	1.276 (20 °C)	1,019 (20 °C)	3,343.2 (68 °F)		0.49 (15 °C)	5.272 (59 °C)
n-Butyl chloride (22,46)	C4H9Cl	0.887	1,140	3,740.2	4.57	0.529 (15 °C)	5.692 (59 °F)
Carbon tetrachloride	CCI4	1.595 (20°C)	926	3038.1	2.48	0.607	6.531
Carbon tetrafluoride (Freon 14)	CF4	1.75 (-150 °C)	875.2 (150 °C)	- 2,871.5 (-238 °F)	6.61		
Chloroform	CHCl3	1.489	979	3,211.9	3.4	0.55	5.918
Dichlorodifluoromethane (Freon 12)	CCl2F2	1.516 (40 °C)	774.1	2,539.7	4.24		
Ethanol	C2H6O	0.789	1,207	3,960	4.0	1.39	14.956
Ethyl acetate	C4H8O2	0.901	1,085	3,559.7	4.4	0.489	5.263
Ethyl alcohol	C2H6O	0.789	1,207	3,960	4.0	1.396	15.020
Ethyl benzene	C8H10	0.867 (20 °C)	1,338 (20 °C)	4,.89.8 (68 °F)		0.797 (17 °C)	8.575 (63 °F)
Ether	C4H10O	0.713	985	3231.6	4.87	0.311	3.346
Ethyl ether	C4H10O	0.713	985	3231.6	4.87	0.311	3.346
Ethylene bromide	C2H4Br2	2.18	995	3264.4		0.79	8.5
Ethylene chloride	C2H4Cl2	1.253	1,193	3,914		0.61	6.563
Ethylene glycol	C2H6O2	1.113	1,658	5439.6	2.1	17,208 (20 °C)	185.158 (68 °F)
Fluorine	F	0.545 (-143 °C)	403 (- 143 °C)	1322.2 (- 225 °F)	11.31		
Formaldehyde, methyl ester	C2H4O2	0.974	1,127	3697.5	4.02		
Freon R12			774.2	2540			
Glycol	C2H6O2	1.113	1658	5439.6	2.1		
50% Glycol/50% H2O			1,578	5,177			
Isopropanol	C3H8O	0.785 (20 °C)	1,170 (20 °C)	3,838.6 (68 °F)		2.718	29.245
Isopropyl alcohol (46)	C3H8O	0.785 (20 °C)	1,170 (20 °C)	3,838.6 (68 °F)		2.718	29.245
Kerosene		0.81	1,324	4,343.8	3.6		

Tflow 170						Ø 16C	hnical da
Methane	CH4	0.162 (-89 °C)	405 (-89 °C)	1,328.7 (-128 °F)	17.5		
Methanol	CH4O	0.791 (20 °C)	1,076	3,530.2	292	0.695	7.478
Methyl acetate	C3H6O2	0.934	1,211	3,973.1		0.407	4.379
Methyl alcohol	CH4O	0.791	1,076	3,530.2	292	0.695	7.478
Methyl benzene	C7H8	0.867	1,328 (20 °C)	4,357 (68 °F)	4.27	0.644	7.144
Milk, homogenized Naphtha		0.76	1,548 1,225	5,080 4,019			
		0.76	753 (-	2,470.5			
Natural Gas		(-103 °C) 0.808	103 °C) 962 (-	(-153 °F) 3,156.2		0.217 (-	2.334 (-
Nitrogen	N2	(-199 °C)	199 °C)	(-326 °F)		199 °C)	326 °F)
Oil, Car (SAE 20a.30)		1.74	870	2,854.3		190	2,045.09
Oil, Castor	C11H10O0	0.969	1,477	4,845.8	3.6	0.670	7.209
Oil, Diesel		0.80	1,250	4,101			
Oil, Fuel AA gravity		0.99	1,485	4,872	3.7		
Oil (Lubricating X200)			1,530	5,019.9			
Oil (Olive)		0.912	1,431	4,694.9	2.75	100	1,076.36
Oil (Peanut)		0.936	1,458	4,738.5			
Propane (-45 to -130 °C)	СЗН8	0.585 (-45 °C)	45 °C)	- 3,290.6 (-49 °F)	5.7		
1-Propanol	C3H8O	0.78 (20 °C)	1,222 (20 °C)	4,009.2 (68 °F)			
2-Propanol	C3H8O	0.785 (20 °C)	1,170 (20 °C)	3,838.6 (68 °F)		2.718	29.245
Propene	C3H6	0.563 (-13°C)	13°C)	- 3159.4 (9°F)	6.32		
n-Propyl-alcohol	C3H8O	0.78 (20 °C)	1,222 (20 °C) 963	4,009.2 (68 °F) 3159.4		2.549	27.427
Propylene	C3H6	0.563 (-13 °C)	(-13 °C) 828.3	(9 °F) 2.717.5	6.32		
Refrigerant 11	CCI3F	1.49	020.3 (0 °C) 774.1 (-	(32 °F)	3.56		
Refrigerant 12	CCI2F2	1.516 (-40 °C)	40 °C) 875.24 (-	(-40 °C)	4.24		
Refrigerant 14	CF4	1.75 (-150 °C)	150 °C) 891		6.61		
Refrigerant 21	CHCl2F	1.426 (0 °C)	(0 °C) 893.9	(32 °F) 2,932.7	3.97		
Refrigerant 22	CHCIF2	1.491 (-69 °C)	(50 °C) 783.7	(122 °F) 2,571.2	4.79		
Refrigerant 113	CCI2F-CCIF2	1.563	(0 °C)	(32 °F) - 2,182.7	3.44		
Refrigerant 114	CCIF2-CCIF2	1.455	10 °C) `	(14 °F) - 2,153.5	3.73		
Refrigerant 115	C2CIF5		50 °C)	(-58 °F)	4.42		
Refrigerant C318	C4F8	1.62 (-20 °C)	574 (-10 °C)		3.88	1 27	14 74
Sodium nitrate	NaNO3	1.884 (336 °C)	(336°C)	5,785.1 (637 °F)	0.74	1.37 (336 °C)	14.74 (637 °F)
Sodium nitrite	NaNO2	1.805 (292 °C)	(292°C)	6157.5 (558 °F)			
Sulphur	S		1177 (250 °C)		-1.13		
Sulphuric Acid	H2SO4	1.841	1,257.6	4,126	1.43	11.16	120.081

ATflow 170						8 Te	chnical data
Tetrachloroethane	C2H2Cl4	1553 (20 °C)	1,170 (20 °C)	3,838.6 (68 °F)		1.19	12.804
Tetrachloro-ethene	C2Cl4	1.632	1,036	3,399			
Tetrachloro-Methane	CCI4	1.595 (20 °C)	926	3,038.1		0.607	6.531
Tetrafluoro-methane (Freon 14)	CF4	1.75 (-150 °C)	875.24 (- 150 °C)	- 2,871.5 (-283 °F)	6.61		
Toluene	C7H8	0.867 (20 °C)	1,328 (20 °C)	4,357 (68 °F)	4.27	0.644	6.929
Toluol	C7H8	0.866	1,308	4,291.3	4.2	0.58	6.24
Trichloro-fluoromethane (Freon 11)	CCI3F	1.49	828.3 (0 °C)	2,717.5 (32 °F)	3.56		
Turpentine		0.88	1,255	4,117.5		1.4	15.064
Water, distilled	H2O	0.996	1,498	4,914.7	-2.4	1.00	10.76
Water, heavy	D2O		1,400	4,593			

1531

5023

1.00

10.76

-2.4

1.025

Water, sea

Temperat		Sound Speed in W	
°C	°F	m/s	ft/s
0	32.0	1402	4600
1	33.8	1407	4616
2	35.6	1412	4633
3	37.4	1417	4649
4	39.2	1421	4662
5	41.0	1426	4679
6	42.8	1430	4692
7	44.6	1434	4705
8	46.4	1439	4721
9	48.2	1443	4734
10	50.0	1447	4748
11	51.8	1451	4761
12	53.6	1455	4774
13	55.4	1458	4784
14	57.2	1462	4797
15	59.0	1465	4807
16	60.8	1469	4820
17	62.6	1472	4830
18	64.4	1476	4843
19	66.2	1479	4853
20	68.0	1482	4862
21	69.8	1485	4872
22	71.6	1488	4882
23	73.4	1491	4892
24	75.2	1493	4899
25	77.0	1496	4908
26	78.8	1499	4918
27	80.6	1501	4925
28	82.4	1504	4935
29	84.2	1506	4941
30	86.0	1509	4951
31	87.8	1511	4958
32	89.6	1513	4964
33	91.4	1515	4971
34	93.2	1517	4977

KATflow 170 8 Technical data

35	95.0	1519	4984
36	96.8	1521	4984
37	98.6	1523	4990
38	100.4	1525	4997
39	102.2	1527	5010
40	104.0	1528	5013
41	105.8	1530	5020
42	107.6	1532	5026
43	109.4	1534	5033
44	111.2	1535	5036
45	113.0	1536	5040
46	114.8	1538	5046
47	116.6	1538	5049
48	118.4	1540	5053
49	120.2	1541	5056
50	122.0	1543	5063
51	123.8	1543	5063
52	125.6	1544	5066
53	127.4	1545	5069
54	129.2	1546	5072
55	131.0	1547	5076
56	132.8	1548	5079
57	134.6	1548	5079
58	136.4	1548	5079
59	138.2	1550	5086
60	140.0	1550	5086
61	141.8	1551	5089
62	143.6	1552	5092
63	145.4	1552	5092
64	147.2	1553	5092
65	149.0	1553	5095
66	150.8	1553	5095
67	152.6	1554	5099
68	154.4	1554	5099
69	156.2	1554	5099
70	158.0	1554	5099
71	159.8	1554	5099
72	161.6	1555	5102
73	163.4	1555	5102
74	165.2	1555	5102
75	167.0	1555	5102
76	167.0	1555	5102
77	170.6	1554	5099
78	172.4	1554	5099
79	174.2	1554	5099
80	176.0	1554	5099
81	177.8	1554	5099
82	179.6	1553	5095
83	181.4	1553	5095
84	183.2	1553	5095
85	185.0	1552	5092
86	186.8	1552	5092
87	188.6	1552	5092
88	190.4	1551	5089

KATflow 170 8 Technical data

89	192.2	1551	5089
90	194.0	1550	5086
91	195.8	1549	5082
92	197.6	1549	5082
93	199.4	1548	5079
94	201.2	1547	5076
95	203.0	1547	5076
96	204.8	1546	5072
97	206.6	1545	5069
98	208.4	1544	5066
99	210.2	1543	5063
100	212.0	1543	5063
104	220.0	1538	5046
110	230.0	1532	5026
116	240.0	1524	5000
121	250.0	1516	5007
127	260.0	1507	4944
132	270.0	1497	4912
138	280.0	1487	4879
143	290.0	1476	4843
149	300.0	1465	4807
154	310.0	1453	4767
160	320.0	1440	4725
166	330.0	1426	4679
171	340.0	1412	4633
177	350.0	1398	4587
182	360.0	1383	4538
188	370.0	1368	4488
193	380.0	1353	4439
199	390.0	1337	4387
204	400.0	1320	4331
210	410.0	1302	4272
216	420.0	1283	4210
221	430.0	1264	4147
227	440.0	1244	4082
232	450.0	1220	4003
238	460.0	1200	3937
243	470.0	1180	3872
249	480.0	1160	3806
254	490.0	1140	3740
260	500.0	1110	3642

KATflow 170 9 Specification

9 Specification

General

Measuring principle: Ultrasonic time difference correlation principle

Flow velocity range: 0.01 ... 25 m/s

Resolution: 0.25 mm/s

Repeatibility: 0.15 % of measured value ±0.015 m/s

Accuracy: Volume flow

 $\pm~1~...~3~\%$ of measured value depending on application, $\pm~0.5~\%$ of measured value with process calibration

Flow velocity

± 0.5 % of measured value Turn down ratio: 1/100

Gaseous and solid content of liquid media: < 10 % of volume

Flowmeter

Manufacturer	Katronic Technologies Ltd. Earls Court, 13 Warwick Street Earlsdon Coventry CV5 6ET UNITED KINGDOM Quintex GmbH D-97922 Lauda-Königshofen GERMANY
Marking	Gas groups II 2G Ex db eb IIA/IIB T6
Certificate number	EPS 11 ATEX 1355 X
Degree of protection	IP66 according to EN 60529
Temperature limits	Temperature class T6: -20 +60 °C

Flow channels: 1 or 2

Power supply: 100 ... 240 V AC 50/60 Hz, 9 ... 36 V DC, special versions on request

Display: LCD graphic display, 128 x 64 dots, backlit

Dimensions: H 237 x W 258 x D 146 mm without cable glands

Weight: Approx. 2.3 kg Power consumption: < 10 W Signal damping: 0... 99 s

Measurement rate: 1Hz standard, higher rates on application

Operating languages: English, 2 other (as requested and subject to availability)

Response time: 1 s, faster rates upon request Calculation functions: Average/difference/sum

Quantity and units of measurement

Volumetric flow rate: m3/h, m3/min, m3/s, l/h, l/min, l/s, USgal/h (US gallons per hour),

USgal/min, USgal/s, bbl/d (barrels per day), bbl/h, bbl/min, bbl/s.

Flow velocity: m/s, ft/s, inch/s Mass flow rate: g/s, t/h, kg/h, kg/min Volume: m₃, I, gal (US gallons), bbl

Mass: q, kq, t

Heat flow: W, kW, MW (only with heat quantity measurement option)
Heat quantity: J, kJ, MJ (only with heat quantity measurement option)

Sig dB (signal), noise dB, SNR,

C m/s (sound speed), CU (housing temperature)

Tin, Tout (inlet and outlet temperature)

KATflow 170 9 Specification

Internal data logger

Storage capacity: In excess of 1 million data points (16MB)

Logging data: Up to ten selected variables

Communication

Serial interface: RS 232, RS 485 (optional)

Data: Instantaneous measured value, parameter set and configuration, logged data

KATdata+ Software

Functionality: Downloading of measured values/parameter sets, graphical presentation, list

format, export to third party software, on-line transfer of measured data

Operating systems: Windows 2000, NT, XP, Vista, 7, 8, 10; Linux; Mac (optional)

Process inputs / Process Outputs (maximum of five per instrument)

Inputs

Temperature: PT 100, three or four-wire circuit, measuring range - 50 ... 400 °C, resolution 0.1K, accuracy ±0.2 K

Current : 0 ... 20 mA active or 4 ... 20 mA passive, U = 30 V, $R_i = 50 \text{ Ohm}$,

accuracy 0.1 % of MV

Outputs

Current : 0/4 ... 20 mA, active (RLoad < 500 Ohm), 16 bit resolution, U = 30 V,

accuracy = 0.1 %

Voltage : On request, 0 ... 10 V, Ri = 500 Ohm

Frequency: On request

Digital (Optical - Open Collector) : U = 24 V, Imax = 4 mA

Digital (relay): Form C (SPDT-CO) contacts, U = 48 V, Imax = 250 mA

Clamp-on sensors

Katronic Technologies Ltd. Earls Court, 13 Warwick Street Earlsdon Coventry CV5 6ET UNITED KINGDOM
Gas groups II 2G Ex mb II T6 - T4 X Dust groups II 2D Ex mbD 21 IP68 T80°C - T120°C X
TRAC 09 ATEX 21226X
IP68 according to EN 60529
Temperature class T4: -50 +115 °C
Temperature class T5: -50 +90 °C
Temperature class T6: -50 +75 °C

Diameter range :

Type K4Ex: 10 ... 250 mm
Type K1Ex: 50 ... 3000 mm
Dimensions : 60 x 30 x 34 mm
Material : Stainless steel

Protection method : Encapsulation

KATflow 170 10 Index

10 Index

Acoustic coupling gel	23	Negative separation distance	17
Analogue current input	41	Outer Diameter	29
Analogue current output	39	Output Configuration	37
Analogue frequency output	39	Output settings	37
Analogue voltage output	39	Packaging	13
Approvals	10	Passes	29
Cable glands	21	Pipe material selection	28
Certificate of Conformity	55	Pipe parameters	28
Commissioning	33	Pipe preparation	17
Customer Return Note (CRN)	56	Pole mounting	18
Datalogger	32	Process value	30
Diagnostic displays	31	PT100 inputs	40
Diagnostics	37	Quick Start	28
Diagonal mode	17	Reflection mode	17
Digital open collector output	40	Relay output	40
Digital relay output	40	Retaining clip (sensor mounting)	24
Dimensions	19	Return Policy	6
Display	27	RS 232	38
Display icons	27	Safety	5
Display settings	37	Scope function	42
Disturbance sources	15	Sensor configuration	17
Dual channel calculations	41	Sensor Location	13
Dual channel display mode	31	Sensor mounting	22
Electrical connections	20	Sensor mounting fixtures	24
Equipotential bonding	22	Sensor placement screen	30
Error messages	44	Sensor Separation	17
Fluid selection	29	Serial interface	38
Fluid temperature	29	Setup Wizard	28
HART compatible output	38	SOS (Speed of Sound)	41
Identification of components	13	Sound passes	29
Input configuration	40	Sound velocity measurement	41
Installation	13	Specification	52
Junction box	21	Storage	13
Keypad	26	Switching on / off	26
Keypad function	26	System configuration	9
Legislative requirements	7	Temperature compensation	41
Liner material	29	Temperature limits	11
Maintenance	43	Three line display	30
Math display	32	Totalizer	31
Maths functions	41	Transit-time method	8
Measurements	30	Troubleshooting	44
Measuring principle	8	Units of measurement	28
Menu structure	33	Wall thickness	29
MODBUS	38	Warranty	6
Multiple sensors	9	Wizard (quick setup)	28

KATflow 170 Appendix A

Appendix A

Declaration of Conformity

We, Katronic Technologies Ltd., declare under our sole responsibility that the products listed below to which this declaration relates are in conformity with the EEC directives.

EMC Directive 2014/30/EU for Electromagnetic Compatibility Low Voltage Directive 2014/35/EU for Electrical Safety

Description of products:

Ultrasonicflowmeters: KATflow100, 150, 170, 200, 210 and 230 with associated KATRONIC transducers

The mentioned products are in conformity with the following European Standards:

Class	Standard	Description
EMC Directive	BS EN 61326-1:2013	Electrical equipment for measurement, control and laboratory use-EMC requirements
!mmunity	BS EN 61326-1:2013	Electrical equipment for continuous un attended use
	BS EN 610004-2:2009	Electrostatic discharge
	BS EN 61000 4-3:2006	RFfield
	BS EN 610004-4:2012	Electric fast transient/burst
	BS EN 61000-4-5:2014	Surge
	BS EN 61000-4-6:2014	RFcanducted
	BS EN 61000-4-	AC mains voltage dips and interruption
	11:2004	
Emission	BS EN 61326-1:2013	Electrical equipment Class B
	BS EN 55022:2010	DisturbancevoltageClass B
Low Voltage	BS EN 61010-1:2010	Safety requirements for electrical equipment for measurement, control
Directive		and laboratory use

Coventry, 20thApril 2016 For and on behalf of Katronic Technologies Ltd.

And rew Sutton Managing Director

Ketronic Technologies Est's Court, Warwick Street Coventry CVS 6ET United Kingdom

Tel. +44 (0)2476 714 111 Fex+44 (0) 2476 715 446 msi@kstronic.co.uk www.kstronic.co.uk

VAT No. GB 668 0907 89 Registered in England No. 3296028 Registered office as shown

Registered in England No. 3208028 • Registered Office as above

KATflow 170 Appendix B

Appendix B

Company stamp

Customer Return Note (CRN)

oustomer Return Note	only .
Company	Address
Name	
Tel. No.	
E-mail	
Instrument model	Katronic contract no.
Serial number	(if known)
Sensor type(s)	
Sensor serial	
number(s)	
The enclosed instrument ha	s been used in the following environment (please $\sqrt{\ }$):
Nuclear radiation	
Water-endangering	
Toxic	
Caustic	
Biological	
Other (please specify)	
We confirm (* delete if not a	pplicable)
■ that we have chec	ted the instrument and sensors are free of any contamination*,
 neutralised, flushe 	d and decontaminated all parts which have been in contact with
	ces and/or environments*, to man or environment through any residual material.
• that there is no rish	to man or environment unrough any residual material.
Data	
Date	
Signature	

